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Monte Carlo simulations in generalized isobaric-isothermal ensembles
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We present three generalized isobaric-isothermal ensemble Monte Carlo algorithms, which we refer to as the
multibaric-multithermal, multibaric-isothermal, and isobaric-multithermal algorithms. These Monte Carlo
simulations perform random walks widely in volume space and/or in potential energy space. From only one
simulation run, one can calculate isobaric-isothermal-ensemble averages in wide ranges of pressure and tem-
perature. We demonstrate the effectiveness of these algorithms by applying them to the Lennard-Jones 12-6
potential system with 500 particles.
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I. INTRODUCTION [13-19. However, there has been no attempt to introduce the

o ) ) ~multicanonical idea into the ISOBATH ensemble.
In statistical mechanics, various ensembles are consid- | this article, we further introduce two variations of the

ered. The Monte CarlgMC) algorithm is an indispensable \jyBATH algorithm. In the two variations, simulations per-
tool in computational statistical mechanics. In order to realorm random walks either in volume space or in potential
ize desired statistical ensembles, corresponding MC tecrb—nergy space. We refer to the former as the multibaric-

niques have been developgh-5]. The first MC simulation  jsothermal(MUBA) algorithm and the latter as the isobaric-
was performed in the canonical ensemble by Metropetis multithermal(MUTH) algorithm.

al. [1], and it is still the most widely used ensemble. The  the apove three methods have the following advantages:
isobaric-isotherma(ISOBATH) [2] and thg microcanonical (i) They allow the simulations to escape from any local-
ensemble MC methods3] are also extensively used. minimum-energy state and to sample the configurational
Besides the above physical ensembles, it is now almost &ace more widely than the conventional ISOBATH method.
default to simulate in artificial, generalized ensembles so thaf)e can know the most stable configuration at the designated
the multiple-minima problem, or the broken ergodicity prob- pressure and temperaturgi) One can obtain various

lem, in complex systems can be overcoffier recent re-  |SOBATH ensembles from only one simulation rgiii.) One
views, see Refd6-8§]). The multicanonical algorithrf®,101  can control pressures and temperatures similarly to real ex-
is one of the most well-known such methods in generalizedyerimental conditions. This method enables one to compare

ensemble. In a multicanonical ensemble, a non-Boltzmangjmy|ation conditions and those of experiments more easily
weight factor is used so that a free 1D random walk is realy,q directly.

ized in the potential energy space. This enables the simula- The outline of the present paper is as follows: In Sec. II

tion to escape from any local-minimum-energy state and tQue first review briefly the recently proposed MUBATH al-
sample the conflguratlonal space more widely than th_e COMyorithm [12] and explain the MUBA algorithm and the
ventional canonical MC algorithm. Another advantage is thaf,TH algorithm. In Sec. Ill we present the computational
one can obtain various canonical-ensemble averages in fuajls for the applications of these methods to the Lennard-
wide range of temperatures from one simulation run by thejones 12-6 potential system. In Sec. IV the results and dis-

reweighting techniquesl 1]. The generalized-ensemble algo- ¢yssions are presented, and concluding remarks follow in
rithms are now widely used not only for simple systems butggs \/

also for complex systems, such as proteins and glasses.

In the preceding lettef12], we proposed an MC algo- Il. METHODS
rithm in which one can obtain various ISOBATH ensembles .
from only one simulation run. In other words, we discussed A- MUBATH algorithm
bringing the multicanonical technique into the ISOBATH The probability distribution R,«{E;T,) for potential en-
MC method. We refer to this method as the multibaric-ergy E in the canonical ensemble at absolute temperafyre
multithermal (MUBATH) algorithm. This MC simulation is given by the product of the density of staté&) and the
performs a random walk in 2D space: volume space as weloltzmann weight factor &oF:
as potential energy space. There also exist a few works of pE
multidimensional extensions of the multicanonical algorithm Pavr(E; To) = n(E)e ™", (1)

where Bo=1/kg Ty and kg is the Boltzmann constant. Be-

causen(E) is a rapidly increasing function and the Boltz-
*Electronic address: hokumura@ims.ac.jp mann factor decreases exponentially,fPE; Ty) is a bell-
"Electronic address: okamotoy@ims.ac.jp shaped distribution.
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In the ISOBATH ensemble, on the other hand, both po- Pmd E) = N(E)W,,(E) = const, (9)
tential energyE and volumeV fluctuate. The distribution
Pner(E,V; Ty, Py) for E andV at temperaturd, and pressure

Po is given by and thus a free random walk is realized in the potential en-
) _ _gH ergy space.

Pue(E,V:To,Po) =n(E, V)e™", @ The first example is the MUBATH ensemble, where simu-
where the density of state¢E, V) is given as a function g8 lations perform random walks in both potential energy space
as well asV, andH is the “enthalpy”(without the kinetic- and volume space. For the purpose of realizing such random
energy contributions walks, every state is sampled by the MUBATH weight factor

WmelE,V) so that a uniform distribution in both potential
H=E+PoV. (3 energy space and volume space may be obtained:

This ensemble yields a bell-shaped distribution in Hetmnd

V, while the canonical ensemble gives such a distribution

only in E. PiblE. V) = n(E, V)W E,V) = n(E,V)exp{— BoHmp(E.V)}
The conventional ISOBATH MC simulations are per- = const, (10)

formed as follows[2]. The partition functionYypt in the

ISOBATH ensemble is given by

1 % whereH . is referred to as the MUBATH enthalpy.
YnpT= Tf dvf drNeg B (4) In order to perform the MUBATH MC simulation, we
ATNE S follow the conventional ISOBATH MC techniques as de-
. . . scribed above. Namely, the trial moves of the coordinates
whereA is the thermal de Broglie wavelengtN,is the total from s to s’ and of the volume fronV to V' are generated

i ) = ) .
number of particles of the system, antl'={ry,---.ry} are by uniform random numbers. The MUBATH enthalpy is
real coordinates of the particles. Introducing scaled Coord'tonsequently changed from . {[E(s™,V],V} to H!

m L] ]

natess;=L"'r; (here, the particles are placed in a cubic boxEH ETsN’ /1 V'Y by these trial moves. By re Iacimbt
of a side of size= V), the above equation is rewritten as mod ELST, V'], V'} by - By replacirtg

by H,,: in EQ.(8), the trial moves will now be accepted with
the probability

1 o0
— (N) o= Bg(H-NkgTInV)
Ynpt AN JO dvf dsVe Po o) (5)

where the enthalpy is now a function st andV: w(o — n) = min(1,exg— Bo{H s~ Hmot

—NkgT, IN(V/AV)Y). (11)
. _ N) The MUBATH weight factor is, however, na priori
Therefore, the probability density[s"™), V] that the system | nown and has to be determined by the usual iterations of

has a specific configuraticsf" in a volumeV is given by short simulation§20-22. The first simulation is carried out
AN V] o Pl H-NigTonV} 7 at Tp and Py in the ISOBATH ensemble. Namely, we use

H=H[ES™,V),V]=E[sN,V] + PyV. (6)

We can now perform Metropolis sampling on the scaled co-

ordinatess™¥' and the volumeV. The trial moves of the co- (L(E,V) = expl- BHI(EV)}, (12
ordinates froms, to 5’ and of the volume fronV to V' are

generated by uniform random numbers. The enthalpy is con-

sequently changed from H{E[sN,V],V} to H’ where

=H{E[sNV’,V’'],V'} by these trial moves. According to Eq.

(7), the trial moves will now be accepted by the Metropolis

criterion with the probability HL (E,V) = E+ PyV. (13)

w(o — n)=min(1,exg— Bo{H —H = NksTy In(V'/V)}]).

(8)  The (i-1)th simulation is performed with the weight factor
i-1 =1 . . . .
The ISOBATH probability distribution for(E.V;Te,Pg) is Wt (E;V) and let an\wk;()igE’V) be the obtained distribution.
obtained by this scheme. The ith weight factorW,, (E,V) is then given by
In this paper we introduce three versions of multicanoni-
cal extensions of the ISOBATH ensemigtevo of them will ) ,
be presented in the next subsectjoria the multicanonical WO (E,V) = exd - BHD (E, V)], (14
ensemble, a non-Boltzmann weight faci,(E) is used.
This multicanonical weight factor is characterized by a flat
probability distribution R,J(E): where
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(i-1)
mbt

Hi( E.V) = {H(i—l)
Hmbt (E!V) ’

For convenience, we discretize and V into bins and use
histograms to calculate(r'rﬁ)’t(E,V). We iterate this process
until a reasonably flat distribution!’ 2(E,V) is obtained.
After an optimal weight factow,,,(E, V) is determined, a
long production simulation is performed for data collection.
We can apply the reweighting techniqudd] to the results
of this production run in order to calculate the ISOBATH
ensemble averages at the designated temperatanel pres-
sureP. Namely, the probability distribution\B«{(E,V;T,P)
in the ISOBATH ensemble in wide ranges ®fand P is
given by

P_ (E,V)W.3 (E,V)e AEPY
Pupt(E,V;T,P) = moi V) Win(E.V)

J dv f dE Pl E, V)W, (E, V)e AEPY)

(16)

The expectation value of a physical quantityat T andP is
obtained from

<A>NPT:def dE AE,V)Pyp(E,V;T,P)

_ (AEVWLH(EV)ePEPY)
(Wi (E Ve BEPY

where(- - )t IS the MUBATH ensemble average.

: (17)

B. MUBA algorithm

(E,\V) +kgTo In PUTV(E,V), for

PHYSICAL REVIEW E 70, 026702(2004

- i-1
v
i-1)
mbt

(E,V) >0,

(E,\V) =0. (19

for

turns to that of the MUBATH algorithniEqg. (11)].

The MUBA weight factorW,,,(V) has to be determined
again by the usual iterations of short simulatiq2®—23.
The probability distribution in the volume space

Prp(V) = f dE Py E,V) (20)
is calculated during the MUBA simulation iterations,
whereas the probability distribution,B(E,V) is calculated
in the 2D E-V space in the MUBATH simulations. The
weight factorV\/n?b(V) at theith simulation is determined by

WELV) = exd - BeQIW)], (21)
where
QW) = PV (22)
for the first ISOBATH simulation(i=1) or
Q)
QD) +kgTo In PUED(Y), for  Pib(v) >0,
Qlhv), for  PiDv)=0
(23

for i=2. Here,~@;1)(v) is the obtained distribution of vol-
ume at the(i —1)th simulation.
After an optimal weight facto,,,,(V) is determined, a

long production simulation is performed. We use the re-

The second example of multicanonical extensions of thaveighting techniques to calculate the ISOBATH ensemble

ISOBATH ensemble is the MUBA ensemble. Simulations in

averages at chosen valuesToand P. The probability distri-

this ensemble perform random walks in the volume spacedution Ripr(E,V:T,P) is given by

For obtaining the volume-space random walk, the ISOBATH

weight factor €PE*PoV) is changed partially. That is, the
energy part %F is used as it is, and the volume parf&?,
on the other hand, is modified intoWq(V)
=exd -Bomp(V)] so that a flat probability distribution in
volume may be obtained:
Pmb(E,V) =n(E,V)exf -~ BoE]Wm(V)
=n(E,V)exd - Bo{E + Qmp(V)}] = const onV.

(18)

We refer toW,,,,(V) as the MUBA weight factor. The trial

moves are performed apandV as in the above algorithms.
These trial moves will be accepted with the probabilgge

Eq. (11)]
acdo— n)=min(1,exg— B{E' ~E+ Qup(V') = Qnp(V)
= NkgTo IN(V'IV)}]). (19
Note that substituting+Q,,(V) by Hho(E, V), Eq. (19) re-

Pupr(E\V;T,P)
Pms(E,V) VV,_nlb(V) e PPV (B-BoE

f dv f dE Pry(E, V)W, (V)e PPVe (F-FolE

(24)

The expectation value of a physical quantityat T andP is
obtained from

(AnpT= (AE, V)Mlkx(v) er Pve_(ﬁ‘ﬁo)E>mb
e —

(25

where(: - ), means the MUBA ensemble average. The en-
ergy part still remains #oF as in the ISOBATH method in
Eq. (18), i.e., the temperature is fixed & during the simu-
lation. This means that the configurational space is not
sampled widely in the energy space. Therefore, the reweight-
ing techniques are employed only at a temperature that is
close toTy:
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T=~T,. (26) ISOBATH ensemble averages, we use the reweighting tech-

nigues and calculate the distributiog/(E,V;T,P) at cho-
However, due to the volume partAe?mY), one can sample gen, values off and P as follows:

a wide volume space and calculate the distribution
Pypr(E,V;T,P) in the wide range oP/T or P. Pupr(E\V;T,P)

Pl E, V)W, X(E)ePEe™(FP-FoPolV

C. MUTH algorithm

i ; : ; 1 ~BEA~(BP-ByPo)V
The third example of multicanonical extensions of the jdvf dE Pry(E,V) Wiy (E)e e (7o

ISOBATH ensemble is the MUTH ensemble. Simulations in
this ensemble perform random walks in the potential energy (33
space, while the volume-space random walk is realized in thghe expectation value of a physical quan#yat T and P is
MUBA algorithm of the previous subsection. For obtaining then obtained from
the energy-space random walk, the ISOBATH weight factor
e PoB+PV) s again changed partially. That is, the volume
part €V is used as it is, and the energy parfe€ is
modified into W,(E) =exd -B.Emn(E)] so that a flat prob-
ability distribution in the potential energy space may be ob-Where(--)m means the MUTH ensemble average. However,
tained: in the present case, we have the following restrictions on the
range of values o and P which we can choose

(Aor = (A(E,V)W,H(E)e FEe PP-FoPolVy
N W) e AR,

. (34

Pm(E,V) = n(E,V)exf~ BoPoVIWm(E)

P P

=n(E,V)exd — Bo{Em(E) + PoV}] = const onE. 7= T—s- (39)

27 This is because the volume part remains a@"%" in Eq.

We refer toW,(E) as the MUTH weight factor. The trial (27), i.e., the pressure-temperature rafdT is fixed at
moves ofs; andV will be accepted with the probability Po/ Ty during the simulation. This means that the configura-
) tional space is not sampled widely in the volume space.
acqo — n) =min(1,exfg— Bo{Eni— Emi+ Po(V' = V) Therefore, the reweighting techniques are employed only at

~NKkgTp IN(V'V)})). (28) P andT whoseP/T is close toPy/ Ty. On the other hand, the

energy space is sampled widely thus one can calculate the
Note that substitutinde(E) +PoV by Ho(E,V), Eq. (28)  distribution Rpr(E,V;T,P) and the average quantities in the
returns to that of the MUBATH algorithrifEq. (11)]. wide range ofT. Here, we should note that the conjugate
The MUTH weight factorW,,(E) is also determined by variable forV is P/T, rather tharP, and the conjugate vari-
the usual iterations of short simulatiof@0—-23. The prob- able forE is 1/T, that is, T.
ability distribution in the potential energy space

IIl. COMPUTATIONAL DETAILS

PrlE) = f dVPm(E,V) (29) We now give the details of our simulations. We consider a
_ _ _ _ _ Lennard-Jones 12-6 potential system. The length and the en-
is calculated during the iterations. The weight factorergy are scaled in units of the Lennard-Jones diametand

V\/n?t(E) at theith simulation is determined by the depth of the potential, respectively. We use an asterisk
i i (*) for the reduced quantities, such as the reduced length
WEX(E) = ex ~ BoER(E)], (B0 r*=r/0, the reduced temperatuié=ksT/ ¢, and the reduced

pressureP” =P¢?/e.

where We used 500 particleN=500 in a cubic unit cell with
EXNE) =E (31)  periodic boundary conditions. We started the weight-factor
) ) o determination for the three generalized ISOBATH simula-
at the first ISOBATH simulatiorti=1) or tions from a regular ISOBATH simulation &f,=2.0 and
EO(E) Pg=3.0. These temperature and pressure values are, respec-
mt tively, higher than the critical temperatufg and the critical

JERDE) + KTy In BIDE), for  PIY(E) >0, pressyieP; [23-28. Recent reliable data afk.=1.32074)
=1 _io e apd P.=0.12885) [28]. The cutoff radius . was taken to be
Em(E), for P(mt (E)=0 L /2. A cutoff correction was added for the pressure and the
(32) potential energy. In one MC sweep, we made the trial moves
of all particle coordinates and the volurig+1 trial moves
for i=2. Here,~l§;;1>(E) is the obtained distribution at the altogethey. For each trial move the Metropolis evaluations
(i-1)th simulation. of Egs. (11), (19), and (28) were made for MUBATH,
After an optimal weight factor is determined, a long pro- MUBA, and MUTH algorithms, respectively. In order to ob-
duction simulation is performed. In order to calculate thetain flat probability distributions RB(E,V), Pn(V), and
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Isobaric-Isothermal

Initial Simulation

In P(E"/NV'IN)
2

v v v

Multibaric-Multithermal Multibaric-Isothermal Isobaric-Multithermal
2nd Iteration 1st Iteration 1st Iteration
In P(E'/NV'IN) In P(E /N V' INY In P(E/N,V'IN)
) 2

2

5450 ‘L
4643 L4 vy
238 2
(b) EIN 3471 (
6th Iteration 3rd Iteration 3rd Iteration
In P(E' NV INY In P(E/NVIN) In P(EINV'IN)
2 -2

Production Run after 12 Iterations Production Run after 6 Iterations Production Run after 6 Iterations

In P(E /N V' INY In P(E NV INY In P(E/NV'IN)

d

FIG. 1. The probability distributions(E"/N,V*/N) in logarithmic scalga) from the ISOBATH simulation(b)—(d) from the MUBATH
simulations,(b’)—(d’) from the MUBA simulations, andb”)—(d”) from the MUTH simulations.

P.«(E), we carried out relatively short MC simulations of tions to obtain appropriate MUBA weight fact@¥,,(V) and
100 000 MC sweeps and iterated the processes of @¢gs. MUTH weight factorW,,(E). We then performed a long pro-
and (15), (21) and (23), and(30) and (32), respectively. In  duction run of 400 000 MC sweeps with each of the three
the present case, it was required to make 12 iterations to gelgorithms. We chose the bin sizes of these distributions
an optimal MUBATH weight factolV,,,(E,V) and six itera- AE/N=0.02 and AV'/N=0.01 for MUBATH, AV'/N
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(c) E'IN

Production Run after 6 Iterations
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5.4 50 4.6 -42 3.8 -34
(d) E'IN

v

Isobaric-Multithermal
1st Iteration
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X
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{16
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(c") EIN

v

Production Run after 6 Iterations
1.8

{1.6
VN
114

T ey
5.4 50 4.6 42 38 34

(d") E'IN

FIG. 2. The contour maps of the probability distributio&H N, V*/N) in logarithmic scald€a) from the ISOBATH simulation(b)—~(d)
from the MUBATH simulations(b’)—(d’) from the MUBA simulations, andb”)—(d”) from the MUTH simulations.

=0.005 for MUBA, andAE"/N=0.01 for MUTH simula-

=(2.0,3.0, (1.6, 3.0, (2.4, 3.0, (2.0, 2.2, and (2.0, 3.9.

tions. The first set is the same &8, P,) that was used in the first
For the purpose of comparisons of the new method to th&eration of the weight-factor determinations in the MU-

conventional one, we also performed the ISOBATH MCBATH, MUBA, and MUTH simulationgsee Eqs(12), (13),

simulations of 400 000 MC sweeps with 500 Lennard-Jones$21), (22), (27), and(30)].

12-6 potential particles at several sets of temperature and In order to assess the statistical accuracies, we performed

pressure values. They were carried out @F,,P,)  these MC simulations from four different initial conditions in
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Isobaric-Isothermal Multibaric-Multithermal
34} T°=24, P'=3.0
= z
= T'=1.6, P'=30 .
-4.6
-5.4 . . . -54 . . .
0 100000 200000 300000 400000 0 100000 200000 300000 400000
(a) Monte Carlo sweeps (b) Monte Carlo sweeps
Multibaric-Isothermal Isobaric-Multithermal
=
i
54 L L L 54 L " L
0 100000 200000 300000 400000 0 100000 200000 300000 400000
(c) Monte Carlo sweeps (d) Monte Carlo sweeps

FIG. 3. The time series oE /N from (a) the ISOBATH MC simulations afT",P")=(2.4,3.0 and at(T",P")=(1.6,3.0, (b) the
MUBATH MC simulation, (c) the MUBA MC simulation, andd) the MUTH MC simulation.

all the algorithms. The error bars were estimated by the starthe potential-energy distribution by the iteration procedure of
dard deviations from these different simulations. Egs. (21) and (23). In the MUBA method, one can obtain
various ISOBATH ensembles at various pressure values near
temperature T,. The distributions B,(E"/N,V'/N) in
IV. RESULTS AND DISCUSSION Figs. Ad’') and Zd’) contain these ISOBATH-ensemble dis-
tributions. Comparing Figs. (@) and 2d) with Figs. 1d’)

We now present the results of the MUBATH, MUBA, and a4 34/, the broadness in the volume space of the MUBA
MUTH s_|mulat|ons of the Lennard-Jones_s_yste_m _Of 5_00 Palyistribution after the six iterations is almost the same as that
tlgles. Figures 1 and 2 ShO_W the probablht_y distributions of 5t the MUBATH distribution after the 12 iterations. That is,
E /N andV'/N in logarithmic scale and their contour maps, i, order to obtain a broad distribution in the volume space,
respectively. Figures(&) and 2a) show Rp(E /N,V'//N)  the MUBA simulation needs only about half a number of
from the ISOBATH simulation first carried out in the processiterations when compared to the MUBATH simulation.

of Egs.(12) and(13) (i.e.,Tg_:z.o _andPg:3.0). Itis a bell- Figures 1b")~(d") and 2b”")—2(d") show the probability
shaped distribution. As the iteration of Eqs4) a[ld(15) indistributions R,(E"/N,V'/N) from the MUTH simulations.
the MUBATH simulation proceeds, ;B{(E /N,V' /N) will  |n contrast to the MUBA simulation, RE"/N,V"/N) from

become flat and broad gradually as shown in Figs)-2l(d)  the MUTH simulation becomes broad in the potential-energy
and in Figs. 2b)—-2(d). This fact implies that the MUBATH  space like a ribbon with an almost fixed width of the volume
MC simulation indeed sampled the configurational space inlistribution by the iteration process of E¢80) and(32). In
wider ranges of energy and volume than the conventionahe MUTH method, one can obtain various ISOBATH en-
ISOBATH MC simulation. sembles, in which the pressure-temperature ra@id3" are
Figures 1b')-1(d’) and Zb’)-2(d’) show the probability ~the same asPy/T,. The distributions R(E"/N,V'/N) in
distributions R,(E"/N,V'/N) from the MUBA simulations.  Figs. 1d”) and Zd”) contain these ISOBATH-ensemble dis-
It is found that Bs(E"/N,V'/N) becomes gradually broad in tributions. The MUTH simulation after the six iterations
the volume space like a ribbon with an almost fixed width ofmakes a potential-energy distribution as broad as that of the
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Isobaric-Isothermal

Multibaric-Multithermal

1.8 1.8
17} I'=20,P'=22 1 17 }
1.6

< =

14 f n 1.4

1.3 1.3

T'=20, P'=338
l .2 1 1 1 1 . 2 1 1 1
0 100000 200000 300000 400000 0 100000 200000 300000 400000

(a) Monte Carlo sweeps (b) Monte Carlo sweeps

I8 Multibaric-Isothermal L8 Isobaric-Multithermal

1.7 1 1.7

1.6 1 16 |

& <

1\> 1 .5 ~)I-> 1 « 5

14 L4 f

1.3 1.3 |

12 : : . 1.2 . : :

0 100000 200000 300000 400000 0 100000 200000 300000 400000

(c) Monte Carlo sweeps (d) Monte Carlo sweeps

FIG. 4. The time series of/"/N from (a) the ISOBATH MC simulations afT",P")=(2.0,3.9 and at(T",P")=(2.0,2.2, (b) the
MUBATH MC simulation, (c) the MUBA MC simulation, andd) the MUTH MC simulation.

MUBATH simulation after the 12 iterations. For obtaining a dom walk in the volume space rather than in the potential
wide distribution in the potential-energy space, about half theenergy space. Moreover, the MUTH method is to realize
number of iterations is necessary in the MUTH simulationonly a 1D random walk in the potential-energy space,
when compared to the MUBATH simulation. For a flat and whereas the MUBATH algorithm has to perform a 2D ran-
broad distribution in both spaces, however, the MUBATHdom walk both in the potential-energy space and in the vol-
simulation is required. ume space. The random walk in the potential-energy space is
Figure 3 shows the time series Bf/N. Figure 3a) gives  therefore most efficienimost frequent visits to both the low-
the results from the conventional ISOBATH MC simulations est and the highest energy valu@s the MUTH simulation
at(T",P")=(1.6,3.0 and(2.4, 3.0, while Fig. 3b) presents compared to the MUBATH and the MUBA simulations.
those of the MUBATH simulation. The potential energy fluc-  Figure 4 shows the time series \6f/N. Figure 4a) gives
tuates in narrow ranges in the conventional ISOBATH simu-the results from the conventional ISOBATH simulations at
lations. They fluctuate only in the ranges Bf/IN=-4.0 (T ,P")=(2.0,3.9 and (2.0, 2.2, while Fig. 4b) presents
~-3.6 andE'/N=-5.1~-4.7 at the higher temperature of those of the MUBATH simulation. The volume fluctuates in
T'=2.4 and at the lower temperatureOf=1.6, respectively. narrow ranges in the conventional ISOBATH MC simula-
On the other hand, the MUBATH MC simulation performs ations. They fluctuate only in the ranges ¥f/N=1.3~1.4
random walk that covers a wide energy range. A similar situandV'/N=1.5~ 1.6 at the higher pressure Bf =3.8 and at
ation is observed in the MUTH simulation, which is illus- the lower pressure oP"=2.2, respectively. On the other
trated in Fig. 8d). The MUTH algorithm realizes a random hand, the MUBATH simulatiorfFig. 4(b)] and the MUBA
walk in the potential energy space and covers a wide energgimulation [Fig. 4(c)] perform random walks that cover a
range. On the other hand, FigcBimplies that the MUBA  wide volume range. In contrast, Fig(&4 shows that the
algorithm samples th& /N space in the range much wider MUTH algorithm samples th&" /N space in the range much
than the conventional ISOBATH simulation, but slightly nar- wider than the conventional ISOBATH simulation, but
rower than the MUBATH and MUTH simulations. This is slightly narrower than the MUBATH and MUBA simula-
because the MUBA method is designed to realize a 1D rantions. This is because the MUTH algorithm is designed to
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FIG. 5. The contour maps of the probability distributions FIG. 6. The contour maps of the probability distributions
Pupr(E'/N,V'IN; T",P") in logarithmic scale. They are determined Pyp(E'/N,V'/N;T",P") in logarithmic scale. They are determined
from the MUBA MC simulation by the reweighting techniques at from the MUTH MC simulation by the reweighting techniques at
(T, P IT)=(Ty,Py/Ty=(2.0,1.5, (T",P"/T)=(2.0,0.9, and (T",P"/T)=(Ty,Py/Ty=(2.0,1.5, (T",P"/T)=(1.4,1.9, and
(T",P"/T")=(2.0,2.4. The outer solid curve is the contour map of (T",P"/T")=(3.0,1.5. The outer solid curve is the contour map of
In Pry(E"/N,V/N)=-12 from the MUBA simulation. In Po(E"/N, V' /N)=-12 from the MUTH simulation.

realize a 1D random walk in the potential-energy spacey: ,+ . R
rather than in the volume space. Moreover, the MUBAE‘(D.F*/TSL /T*F)'EL(JE,pg/Tgiiﬁvzv_%,fziiﬁT; dif?lesrtezlr?tl{tté?:;er;- t

method is to realize only a 1D random walk in the volume o
space, whereas the MUBATH algorithm has to perform a 2Dtures(T 'PPITO)_,(lA'l's and(3.0,1.3. We can alsg cal- )
random walk. The random walk in the volume space isculate a distribution at a pressure-temperature ratio that is

therefore, most efficientmost frequent visits to both the Slightly different from Py/T,, although a distribution at
lowest and the highest volume valyés the MUBA simu- P /T far from Py/T, is out of the MUTH distribution
lation compared to the MUBATH and the MUTH simula- Pm(E /N,V'/N) (solid curve in Fig. 6. In the present case,
tions. the reweighted distributions in the range with=1.4~ 3.0
From the broad and wide probability distribution of the With P*/T'=1.5 are expected to be accurate.
|0ng production run from these genera”zed ISOBATH simu- Figure 7 shows ISOBATH distributions obtained from the
|ati0nS, various be”_shaped probabmty distributions MUBATH simulation. These ISOBATH distributions are at
PupE'/N,V'/N;T",P") in the ISOBATH ensemble are ob-
tained by the reweighting techniques. They are shown in R —
Figs. 5-7. -6
From the MUBA simulation, one can obtain ISOBATH ff
distributions at a temperature close'lﬁpand in a wide range i ;*7TQ:1%;9T5=1 5
of P'/T". Figure 5 shows ISOBATH distributions at '
(T",P'IT)=(Ty,Py/Te)=(2.0,1.5 and at different pressure- T=14 ’ i
temperature ratios(T,,P"/T")=(2.0,0.9 and (2.0,2.4. P/=LS o e N
These distributions are inside the broad MUBA distribution -
Pmo(E'/N,V'/N) (solid curve in Fig. 5. We can also calcu-
late a distribution at a temperature which is slightly different
from T, although a distribution at a temperature far frégn
is out of the MUBA distribution R,(E"/N,V'/N). Note that r T'=2.0 112
the histogram reweighting techniques yield accurate results P/T=24
only in the range where we have a sufficient number of en- 54 46 38 30
tries in the histogram. We, therefore, expect that only the ’ ' . ' '
reweighted distributions that lie within the range of the dis-
tribution of the MUBA simulation(enclosed in the solid FIG. 7. The contour maps of the probability distributions
curve in Fig. § are reliable. In the present case, the re-p . (E"/N,V'/N;T",P") in logarithmic scale. They are determined
weighted distributions in the range witR' /T =0.9~2.4  from the MUBATH MC simulation by the reweighting techniques
with T"=2.0 are expected to be accurggee the discussions at (T",P"/T)=(T,,Py/Ty)=(2.0,1.5, (T ,P"/T)=(1.4,15,
below around Figs. 8-11 for more details (T",P"/T)=(3.0,1.5, (T",P"/T)=(2.0,0.9, and (T",P"/T")
From the MUTH simulation, one can obtain ISOBATH =(2.0,2.4. The outer solid curve is the contour map of
distributions atT* and P* whose ratioP"/T" is close to  In Py(E"/N,V'/N)=-12 from the MUBATH simulation.

1.8
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FIG. 8. Average quantity calculation by the ISOBATH MC simulation. Average potential energies per pétid\®p1 (a) as functions
of P"/T" at severall” and (b) as functions ofT" at severalP"/T". Average volumes per particly/"/Nyypt (C) as functions ofP”/T" at
severalT" and (d) as functions ofT" at severalP"/T". Filled circles: Combination of the ISOBATH MC simulation and the reweighting
technique. Solid lines: Equation of states calculated by Johnson, Zollweg, and G[28}irBroken lines: Equation of states calculated by
Sun and Tejd30]. The areas encircled by dotted curves indicate those in which the results by the reweighting techniques agree well with the

equations of states.

(T, P /T =(Ty,Py/Ty)=(2.0,1.5, at different pressure- (V'/N")ypr as functions ofP"/T" in Figs. §c), 9(c), 10(c),
temperature ratio§T,, P"/T")=(2.0,0.9 and(2.0, 2.4, and  and 1%c) and as functions of" in Figs. §d), 9(d), 10(d),
at different temperature$T",P,/Ty)=(1.4,1.5 and (3.0, and 11d). Figure 8 is for the ISOBATH simulation, Fig. 9 is
1.5). This means that the MUBATH simulation enables us tofor the MUBA simulation, Fig. 10 is for the MUTH simula-

calculate ISOBATH distributions af* and P*/T" that are  tion, and Fig. 11 is for the MUBATH simulation. Figures
8-11 also show the curves of two equations of states of the

significantly different froniT, andP,/T,. In the present case, T tw ,
the reweighted distributions in the range with",P"/T") Lennard-Jones 12-6 potentlal_ fluid. One was determined by
~(2.0,0.9~(2.0,2.4 and (T P'/T)=(1.4,15 Johnso_n, Zollweg, and Gubbing9] and the other by_ Sun
~(3.0,1.9 are expected to be accurate and Tejg 30]. In both cases, they calculated the quantities for
R > EXpe . ) several pressure- and potential-energy values by the canoni-
In order to investigate further the andP' /T ranges in ¢ molecular dynamics and MC simulations and fitted the
which the ISOBATH an_d the generallzed_ISOBATH_ methOdscoefficients of the modified Benedict-Webb-Rubin type
can accurately determine average physical quantities by thequation into these simulated data to obtain the equations of
reweighting techniques, we shaii' /N)ypr as functions of  states empirically. These curves of equations of states are
P*/T" in Figs. §a), 9(a), 10(a), and 11a) and as functions of accurate and can be used as reference in the present work.
T in Figs. 8b), 9b), 10b), and 11b). We also illustrate The areas encircled by dotted curves roughly indicate those
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FIG. 9. Average quantity calculation by the MUBA MC simulation
reweighting techniques. See the caption of Fig. 8 for details.

. Filled circles: Combination of the MUBA MC simulation and the

in which the results by the reweighting techniques agree welalgorithms from a single simulation run. This is the outstand-
with the equations of states. ing advantage when compared to the conventional ISOBATH
One cannot calculate physical quantities correctly byMC algorithm, in which simulations have to be carried out
combining the ISOBATH algorithm with the reweighting separately at each temperature and pressure.
techniques except a” and P*/T" very close toT, and Figure 9 showsE"/Nyypr and (V' /N)ypt calculated by
PS/TB, respectivgly as sh*own in Fig. 8. A8 or P'/T is  the MUBA simulation and the reweighting techniques. The
going far fromT, or Py/T,, the error bars of any physical areas in which the physical quantities are determined cor-
quantities and the deviations from its correct value will getrectly are elongated alorij =constant lines when compared
large. The ranges in whickE /N)ypr and (V' /N)ypr are  with the ISOBATH method as shown in Figsa®and 9c).
correct are 1.&T'<2.5 and 1.6sP"/T'<1.9. Especially, Figures 9b) and 9d), furthermore, indicate that these areas
on the line ofP" /T =P,/ T,=1.5,(E"/N)ypr and(V'/N)ypr  are elongated vertically at temperatures nBarThese facts
are estimated correctly in the range of £8"<2.3, and on  imply that the MUBA simulation realizes the volume-space
the line ofT*:T;:Z.O, they are correct in the range of 1.3 random walk and enables us to calculate physical quantities
<P'/T'<1.8. It is necessary to use the generalized ISOaccurately in the wide range & /T . The ranges in which
BATH methods, such as the MUBATH, MUBA, and MUTH (E"/N)ypr and (V' /N)ypr are correct are 0ZP"/T <2.6.
algorithms, to determine physical quantitiesTatandP*/T*  In particular, on the line o =T,=2.0, the reliable area in
far from T, and Py/T,. The important point is that one can which physical quantities can be determined accurately by
obtain a desired ISOBATH distribution at numerous tem-the reweighting techniques is extended to the range of 0.9
peratures and/or pressures by these generalized ISOBATHP /T <2.6 from the ISOBATH range of 18P/T
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FIG. 10. Average quantity calculation by the MUTH MC simulation. Filled circles: Combination of the MUTH MC simulation and the
reweighting techniques. See the caption of Fig. 8 for details.

<1.8 (see Fig. 8 This P"/T" range of the MUBA simula- range ofT". The ranges in which average quantities are cor-
tion is more than three times larger than that of the ISO+ect are 1.3<T =<3.3. In particular, on the line oP"/T"
BATH simulation. On the other hand, regarding o, the =P,/ T,=1.5, the physical quantities are determined correctly
MUBA simulation has a reliable area for the reweightingin 1.4<T'<3.2. ThisT" range is more than three times
techniques that is similar to the ISOBATH simulation. Physi-larger than the ISOBATH simulation range of 8" <2.3.
cal quantities are calculated correctly in the range of 1.60n the other hand, regarding ®/T", the MUTH simula-
<T =<2.5, essentially the same range as in the ISOBATHion has a similar width to the ISOBATH simulation in which
simulation. the average values are correct. Physical quantities are calcu-
A similar situation appeared in the MUTH simulation. lated correctly in the range of 1sOP"/T <1.9, the same
Figure 10 showsE"/Nyypr and(V'/N)ypr calculated by the range as in the ISOBATH simulation.
MUTH simulation and the reweighting techniques. The areas The MUBATH simulation covers the reliable areas for the
in which the physical quantities are determined correctly are@eweighting techniques applied both to the MUBA simula-
elongated along®"/T" =constant lines when compared with tion and to the MUTH simulation. That is, the MUBATH
the ISOBATH method as shown in Figs. (b and 1@d).  simulation enables us to calculate physical quantities in wide
Figures 10a) and 1@c), furthermore, indicate that these ar- ranges of bottP"/T" and T". Figure 11 shows that the MU-
eas are elongated vertically at pressure-temperature rati®ATH data agree with the equations of states well in 0.1
near Py/T,. These facts mean that the MUTH simulation <P"/T <2.8 and 1.6<T <3.4. In particular, they are cor-
realizes the potential-energy-space random walk and enablegct in the range of 14T <3.2 on the line of P /T
us to calculate physical quantities accurately in the wide= PB/TZ):l.S and in the range of 0s9P"/T" < 2.6 on the line
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FIG. 11. Average quantity calculation by the MUBATH MC simulation. Filled circles: Combination of the MUBATH MC simulation and
the reweighting techniques. See the caption of Fig. 8 for details.

of T'=Ty=2.0. TheseP"/T" and T" ranges are the same as generalized ISOBATH distributions, the physical quantities
theP"/T range of the MUBA simulation and tHE range of  at theseT" andP"/T" values are obtained reliably.

the MUTH algorithm, respectively. In other words, the

MUBATH simulation provides correct average quantities in V. CONCLUSIONS

the ranges of” andP"/T" more than three times wider than
In this paper, we presented three generalized-ensemble

the ISOBATH simulation.
The T" and P*/T" ranges of the encircled areas in Figs. MC algorithms, namely the multibaric-multitherméV1U-

9-11 agree well with th&" and P"/T" values at which the BATH) algorithm, multibaric-isotherm&aMUBA ) algorithm,
reweighted ISOBATH distributions are inside the broad dis-and isobaric-multithermaiMUTH) algorithm. We success-
tributions of the generalized ISOBATH simulations in Figs. fully applied these methods to the Lennard-Jones 12-6 po-
5-7. For instance, in Fig. 5 the reweighted ISOBATH distri-tential system. The advantage of our methods is that the
butions lie within the original distribution of the MUBA simulations sample the configurational space more widely
simulation forP"/T"=0.9~2.4 with T'=2.0. This range of than the conventional ISOBATH MC method. Therefore, one
P"/T" values are consistent with the encircled areas in Fig. 9can obtain various ISOBATH ensemble averages from only
In order to estimatd” and P"/T" ranges in which accurate one simulation run. In principle, the MUBATH simulation
physical quantities are calculated, therefore, one shouldan provide various ISOBATH ensemble averages at Eny
check that the reweighted ISOBATH distribution is in the and P/T values. Similarly, the MUBA simulation can pro-
original distributions of the generalized ISOBATH simula- vide ISOBATH averages at ary/ T and atT nearT, and the
tions. When the reweighted ISOBATH distribution is in the MUTH simulation can provide ISOBATH averages at any
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and atP/T nearPy/T,. In practice, however, it is impossible the results of the applications of the present algorithms to the
to obtain the ideal weight factors with a finite number of phase-transition region of the Lennard-Jones potential sys-
iterations for the weight factor determinations. Thus, the retem in the future communications.
liable ranges off and P/T in which physical quantities can
be determined accurately by the reweighting techniques de-
pend on how much effort one is willing to spend for the
weight-factor determinations. ) ) o
These algorithms will be of use for investigating a large ~ This work was supported, in part, by the Grants-in-Aid
variety of more complex systems, such as proteins, polyfor the NAREGI Nanoscience Project and for Scientific Re-
mers, supercooled liquids, and glasses. It will be also usefigearch in Priority Areas, “Water and Biomolecules,” from the
to study the problem in which the pressure is important, foriMinistry of Education, Culture, Sports, Science and Technol-
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