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We present three generalized isobaric-isothermal ensemble Monte Carlo algorithms, which we refer to as the
multibaric-multithermal, multibaric-isothermal, and isobaric-multithermal algorithms. These Monte Carlo
simulations perform random walks widely in volume space and/or in potential energy space. From only one
simulation run, one can calculate isobaric-isothermal-ensemble averages in wide ranges of pressure and tem-
perature. We demonstrate the effectiveness of these algorithms by applying them to the Lennard-Jones 12-6
potential system with 500 particles.
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I. INTRODUCTION

In statistical mechanics, various ensembles are consid-
ered. The Monte Carlo(MC) algorithm is an indispensable
tool in computational statistical mechanics. In order to real-
ize desired statistical ensembles, corresponding MC tech-
niques have been developed[1–5]. The first MC simulation
was performed in the canonical ensemble by Metropoliset
al. [1], and it is still the most widely used ensemble. The
isobaric-isothermal(ISOBATH) [2] and the microcanonical
ensemble MC methods[3] are also extensively used.

Besides the above physical ensembles, it is now almost a
default to simulate in artificial, generalized ensembles so that
the multiple-minima problem, or the broken ergodicity prob-
lem, in complex systems can be overcome(for recent re-
views, see Refs.[6–8]). The multicanonical algorithm[9,10]
is one of the most well-known such methods in generalized
ensemble. In a multicanonical ensemble, a non-Boltzmann
weight factor is used so that a free 1D random walk is real-
ized in the potential energy space. This enables the simula-
tion to escape from any local-minimum-energy state and to
sample the configurational space more widely than the con-
ventional canonical MC algorithm. Another advantage is that
one can obtain various canonical-ensemble averages in a
wide range of temperatures from one simulation run by the
reweighting techniques[11]. The generalized-ensemble algo-
rithms are now widely used not only for simple systems but
also for complex systems, such as proteins and glasses.

In the preceding letter[12], we proposed an MC algo-
rithm in which one can obtain various ISOBATH ensembles
from only one simulation run. In other words, we discussed
bringing the multicanonical technique into the ISOBATH
MC method. We refer to this method as the multibaric-
multithermal (MUBATH ) algorithm. This MC simulation
performs a random walk in 2D space: volume space as well
as potential energy space. There also exist a few works of
multidimensional extensions of the multicanonical algorithm

[13–19]. However, there has been no attempt to introduce the
multicanonical idea into the ISOBATH ensemble.

In this article, we further introduce two variations of the
MUBATH algorithm. In the two variations, simulations per-
form random walks either in volume space or in potential
energy space. We refer to the former as the multibaric-
isothermal(MUBA ) algorithm and the latter as the isobaric-
multithermal(MUTH) algorithm.

The above three methods have the following advantages:
(i) They allow the simulations to escape from any local-
minimum-energy state and to sample the configurational
space more widely than the conventional ISOBATH method.
One can know the most stable configuration at the designated
pressure and temperature.(ii ) One can obtain various
ISOBATH ensembles from only one simulation run.(iii ) One
can control pressures and temperatures similarly to real ex-
perimental conditions. This method enables one to compare
simulation conditions and those of experiments more easily
and directly.

The outline of the present paper is as follows: In Sec. II
we first review briefly the recently proposed MUBATH al-
gorithm [12] and explain the MUBA algorithm and the
MUTH algorithm. In Sec. III we present the computational
details for the applications of these methods to the Lennard-
Jones 12-6 potential system. In Sec. IV the results and dis-
cussions are presented, and concluding remarks follow in
Sec. V.

II. METHODS

A. MUBATH algorithm

The probability distribution PNVTsE;T0d for potential en-
ergy E in the canonical ensemble at absolute temperatureT0
is given by the product of the density of statesnsEd and the
Boltzmann weight factor e−b0E:

PNVTsE;T0d = nsEde−b0E, s1d

where b0=1/kBT0 and kB is the Boltzmann constant. Be-
causensEd is a rapidly increasing function and the Boltz-
mann factor decreases exponentially, PNVTsE;T0d is a bell-
shaped distribution.
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In the ISOBATH ensemble, on the other hand, both po-
tential energyE and volumeV fluctuate. The distribution
PNPTsE,V;T0,P0d for E andV at temperatureT0 and pressure
P0 is given by

PNPTsE,V;T0,P0d = nsE,Vde−b0H, s2d

where the density of statesnsE,Vd is given as a function ofE
as well asV, andH is the “enthalpy”(without the kinetic-
energy contributions):

H = E + P0V. s3d

This ensemble yields a bell-shaped distribution in bothE and
V, while the canonical ensemble gives such a distribution
only in E.

The conventional ISOBATH MC simulations are per-
formed as follows[2]. The partition functionYNPT in the
ISOBATH ensemble is given by

YNPT=
1

L3NN!
E

0

`

dVE dr sNde−b0H, s4d

whereL is the thermal de Broglie wavelength,N is the total
number of particles of the system, andr sNd=hr1,¯ ,rNj are
real coordinates of the particles. Introducing scaled coordi-
natessi =L−1r i (here, the particles are placed in a cubic box
of a side of sizeL;Î3V), the above equation is rewritten as

YNPT=
1

L3NN!
E

0

`

dVE dssNde−b0sH−NkBT0lnVd, s5d

where the enthalpy is now a function ofssNd andV:

H = H†EsssNd,Vd,V‡ = EfssNd,Vg + P0V. s6d

Therefore, the probability densityNfssNd ,Vg that the system
has a specific configurationssNd in a volumeV is given by

NfssNd,Vg ~ e−b0hH−NkBT0lnVj. s7d

We can now perform Metropolis sampling on the scaled co-
ordinatesssNd and the volumeV. The trial moves of the co-
ordinates fromsi to si8 and of the volume fromV to V8 are
generated by uniform random numbers. The enthalpy is con-
sequently changed from H{EfssNd ,Vg ,V} to H8
;HhEfssNd8 ,V8g ,V8j by these trial moves. According to Eq.
(7), the trial moves will now be accepted by the Metropolis
criterion with the probability

wso → nd = mins1,expf− b0hH8 − H − NkBT0 lnsV8/Vdjgd.

s8d

The ISOBATH probability distribution PNPTsE,V;T0,P0d is
obtained by this scheme.

In this paper we introduce three versions of multicanoni-
cal extensions of the ISOBATH ensemble(two of them will
be presented in the next subsections). In the multicanonical
ensemble, a non-Boltzmann weight factorWmcsEd is used.
This multicanonical weight factor is characterized by a flat
probability distribution PmcsEd:

PmcsEd = nsEdWmcsEd = const, s9d

and thus a free random walk is realized in the potential en-
ergy space.

The first example is the MUBATH ensemble, where simu-
lations perform random walks in both potential energy space
and volume space. For the purpose of realizing such random
walks, every state is sampled by the MUBATH weight factor
WmbtsE,Vd so that a uniform distribution in both potential
energy space and volume space may be obtained:

PmbtsE,Vd = nsE,VdWmbtsE,Vd ; nsE,Vdexph− b0HmbtsE,Vdj

= const, s10d

whereHmbt is referred to as the MUBATH enthalpy.
In order to perform the MUBATH MC simulation, we

follow the conventional ISOBATH MC techniques as de-
scribed above. Namely, the trial moves of the coordinates
from si to si8 and of the volume fromV to V8 are generated
by uniform random numbers. The MUBATH enthalpy is
consequently changed fromHmbthfEsssNd ,Vg ,Vj to Hmbt8
;HmbthEfssNd8 ,V8g ,V8j by these trial moves. By replacingH
by Hmbt in Eq. (8), the trial moves will now be accepted with
the probability

wso → nd = mins1,expf− b0hHmbt8 − Hmbt

− NkBT0 lnsV8/Vdjgd. s11d

The MUBATH weight factor is, however, nota priori
known and has to be determined by the usual iterations of
short simulations[20–22]. The first simulation is carried out
at T0 andP0 in the ISOBATH ensemble. Namely, we use

Wmbt
s1d sE,Vd = exph− b0Hmbt

s1d sE,Vdj, s12d

where

Hmbt
s1d sE,Vd = E + P0V. s13d

The si −1dth simulation is performed with the weight factor
Wmbt

si−1dsE,Vd and let Pmbt
si−1dsE,Vd be the obtained distribution.

The ith weight factorWmbt
sid sE,Vd is then given by

Wmbt
sid sE,Vd = expf− b0Hmbt

sid sE,Vdg, s14d

where
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Hmbt
sid sE,Vd = HHmbt

si−1dsE,Vd + kBT0 ln Pmbt
si−1dsE,Vd, for Pmbt

si−1dsE,Vd . 0,

Hmbt
si−1dsE,Vd, for Pmbt

si−1dsE,Vd = 0.
s15d

For convenience, we discretizeE and V into bins and use
histograms to calculate Pmbt

sid sE,Vd. We iterate this process
until a reasonably flat distribution Pmbt

sid sE,Vd is obtained.
After an optimal weight factorWmbtsE,Vd is determined, a

long production simulation is performed for data collection.
We can apply the reweighting techniques[11] to the results
of this production run in order to calculate the ISOBATH
ensemble averages at the designated temperatureT and pres-
sureP. Namely, the probability distribution PNPTsE,V;T,Pd
in the ISOBATH ensemble in wide ranges ofT and P is
given by

PNPTsE,V;T,Pd =
PmbtsE,VdWmbt

−1 sE,Vde−bsE+PVd

E dVE dE PmbtsE,VdWmbt
−1 sE,Vde−bsE+PVd

.

s16d

The expectation value of a physical quantityA at T andP is
obtained from

kAlNPT=E dVE dE AsE,VdPNPTsE,V;T,Pd

=
kAsE,VdWmbt

−1 sE,Vde−bsE+PVdlmbt

kWmbt
−1 sE,Vde−bsE+PVdlmbt

, s17d

wherek¯lmbt is the MUBATH ensemble average.

B. MUBA algorithm

The second example of multicanonical extensions of the
ISOBATH ensemble is the MUBA ensemble. Simulations in
this ensemble perform random walks in the volume space.
For obtaining the volume-space random walk, the ISOBATH
weight factor e−b0sE+P0Vd is changed partially. That is, the
energy part e−b0E is used as it is, and the volume part e−b0P0V,
on the other hand, is modified into WmbsVd
;expf−b0VmbsVdg so that a flat probability distribution in
volume may be obtained:

PmbsE,Vd = nsE,Vdexpf− b0EgWmbsVd

= nsE,Vdexpf− b0hE + VmbsVdjg = const onV.

s18d

We refer toWmbsVd as the MUBA weight factor. The trial
moves are performed onsi andV as in the above algorithms.
These trial moves will be accepted with the probability[see
Eq. (11)]

accso → nd = mins1,expf− b0hE8 − E + VmbsV8d − VmbsVd

− NkBT0 lnsV8/Vdjgd. s19d

Note that substitutingE+VmbsVd by HmbtsE,Vd, Eq. (19) re-

turns to that of the MUBATH algorithm[Eq. (11)].
The MUBA weight factorWmbsVd has to be determined

again by the usual iterations of short simulations[20–22].
The probability distribution in the volume space

P̃mbsVd ; E dE PmbsE,Vd s20d

is calculated during the MUBA simulation iterations,
whereas the probability distribution PmbtsE,Vd is calculated
in the 2D E–V space in the MUBATH simulations. The
weight factorWmb

sid sVd at theith simulation is determined by

Wmb
sid sVd = expf− b0Vmb

sid sVdg, s21d

where

Vmb
s1dsVd = P0V s22d

for the first ISOBATH simulationsi =1d or

Vmb
sid sVd

=HVmb
si−1dsVd + kBT0 ln P̃mb

si−1dsVd, for P̃mb
si−1dsVd . 0,

Vmb
si−1dsVd, for P̃mb

si−1dsVd = 0

s23d

for i ù2. Here, P̃mb
si−1dsVd is the obtained distribution of vol-

ume at thesi −1dth simulation.
After an optimal weight factorWmbsVd is determined, a

long production simulation is performed. We use the re-
weighting techniques to calculate the ISOBATH ensemble
averages at chosen values ofT andP. The probability distri-
bution PNPTsE,V;T,Pd is given by

PNPTsE,V;T,Pd

=
PmbsE,VdWmb

−1sVde−bPVe−sb−b0dE

E dVE dE PmbsE,VdWmb
−1sVde−bPVe−sb−b0dE

.

s24d

The expectation value of a physical quantityA at T andP is
obtained from

kAlNPT=
kAsE,VdWmb

−1sVde−bPVe−sb−b0dElmb

kWmb
−1sVde−bPVe−sb−b0dElmb

, s25d

wherek¯lmb means the MUBA ensemble average. The en-
ergy part still remains e−b0E as in the ISOBATH method in
Eq. (18), i.e., the temperature is fixed atT0 during the simu-
lation. This means that the configurational space is not
sampled widely in the energy space. Therefore, the reweight-
ing techniques are employed only at a temperature that is
close toT0:
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T < T0. s26d

However, due to the volume part e−b0VmbsVd, one can sample
a wide volume space and calculate the distribution
PNPTsE,V;T,Pd in the wide range ofP/T or P.

C. MUTH algorithm

The third example of multicanonical extensions of the
ISOBATH ensemble is the MUTH ensemble. Simulations in
this ensemble perform random walks in the potential energy
space, while the volume-space random walk is realized in the
MUBA algorithm of the previous subsection. For obtaining
the energy-space random walk, the ISOBATH weight factor
e−b0sE+P0Vd is again changed partially. That is, the volume
part e−b0P0V is used as it is, and the energy part e−b0E is
modified intoWmtsEd;expf−b0EmtsEdg so that a flat prob-
ability distribution in the potential energy space may be ob-
tained:

PmtsE,Vd = nsE,Vdexpf− b0P0VgWmtsEd

= nsE,Vdexpf− b0hEmtsEd + P0Vjg = const onE.

s27d

We refer toWmtsEd as the MUTH weight factor. The trial
moves ofsi andV will be accepted with the probability

accso → nd = mins1,expf− b0hEmt8 − Emt + P0sV8 − Vd

− NkBT0 lnsV8/Vdjgd. s28d

Note that substitutingEmtsEd+P0V by HmbtsE,Vd, Eq. (28)
returns to that of the MUBATH algorithm[Eq. (11)].

The MUTH weight factorWmtsEd is also determined by
the usual iterations of short simulations[20–22]. The prob-
ability distribution in the potential energy space

P̃mtsEd ; E dVPmtsE,Vd s29d

is calculated during the iterations. The weight factor
Wmt

sidsEd at theith simulation is determined by

Wmt
sidsEd = expf− b0Emt

sidsEdg, s30d

where

Emt
s1dsEd = E s31d

at the first ISOBATH simulationsi =1d or

Emt
sidsEd

=HEmt
si−1dsEd + kBT0 ln P̃mt

si−1dsEd, for P̃mt
si−1dsEd . 0,

Emt
si−1dsEd, for P̃mt

si−1dsEd = 0

s32d

for i ù2. Here, P̃mt
si−1dsEd is the obtained distribution at the

si −1dth simulation.
After an optimal weight factor is determined, a long pro-

duction simulation is performed. In order to calculate the

ISOBATH ensemble averages, we use the reweighting tech-
niques and calculate the distribution PNPTsE,V;T,Pd at cho-
sen values ofT andP as follows:

PNPTsE,V;T,Pd

=
PmtsE,VdWmt

−1sEde−bEe−sbP−b0P0dV

E dVE dE PmtsE,VdWmt
−1sEde−bEe−sbP−b0P0dV

.

s33d

The expectation value of a physical quantityA at T andP is
then obtained from

kAlNPT=
kAsE,VdWmt

−1sEde−bEe−sbP−b0P0dVlmt

kWmt
−1sEde−bEe−sbP−b0P0dVlmt

, s34d

wherek¯lmt means the MUTH ensemble average. However,
in the present case, we have the following restrictions on the
range of values ofT andP which we can choose

P

T
<

P0

T0
. s35d

This is because the volume part remains as e−b0P0V in Eq.
(27), i.e., the pressure-temperature ratioP/T is fixed at
P0/T0 during the simulation. This means that the configura-
tional space is not sampled widely in the volume space.
Therefore, the reweighting techniques are employed only at
P andT whoseP/T is close toP0/T0. On the other hand, the
energy space is sampled widely thus one can calculate the
distribution PNPTsE,V;T,Pd and the average quantities in the
wide range ofT. Here, we should note that the conjugate
variable forV is P/T, rather thanP, and the conjugate vari-
able forE is 1/T, that is,T.

III. COMPUTATIONAL DETAILS

We now give the details of our simulations. We consider a
Lennard-Jones 12-6 potential system. The length and the en-
ergy are scaled in units of the Lennard-Jones diameters and
the depth of the potentiale, respectively. We use an asterisk
s* d for the reduced quantities, such as the reduced length
r* =r /s, the reduced temperatureT* =kBT/e, and the reduced
pressureP* =Ps3/e.

We used 500 particlessN=500d in a cubic unit cell with
periodic boundary conditions. We started the weight-factor
determination for the three generalized ISOBATH simula-
tions from a regular ISOBATH simulation atT0

* =2.0 and
P0

* =3.0. These temperature and pressure values are, respec-
tively, higher than the critical temperatureTc

* and the critical
pressurePc

* [23–28]. Recent reliable data areTc
* =1.3207s4d

andPc
* =0.1288s5d [28]. The cutoff radiusrc

* was taken to be
L* /2. A cutoff correction was added for the pressure and the
potential energy. In one MC sweep, we made the trial moves
of all particle coordinates and the volume(N+1 trial moves
altogether). For each trial move the Metropolis evaluations
of Eqs. (11), (19), and (28) were made for MUBATH,
MUBA, and MUTH algorithms, respectively. In order to ob-

tain flat probability distributions PmbtsE,Vd, P̃mbsVd, and
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P̃mtsEd, we carried out relatively short MC simulations of
100 000 MC sweeps and iterated the processes of Eqs.(14)
and (15), (21) and (23), and (30) and (32), respectively. In
the present case, it was required to make 12 iterations to get
an optimal MUBATH weight factorWmbtsE,Vd and six itera-

tions to obtain appropriate MUBA weight factorWmbsVd and
MUTH weight factorWmtsEd. We then performed a long pro-
duction run of 400 000 MC sweeps with each of the three
algorithms. We chose the bin sizes of these distributions
DE* /N=0.02 and DV* /N=0.01 for MUBATH, DV* /N

FIG. 1. The probability distributions PsE* /N,V* /Nd in logarithmic scale(a) from the ISOBATH simulation,(b)–(d) from the MUBATH
simulations,sb8d–sd8d from the MUBA simulations, andsb9d–sd9d from the MUTH simulations.
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=0.005 for MUBA, andDE* /N=0.01 for MUTH simula-
tions.

For the purpose of comparisons of the new method to the
conventional one, we also performed the ISOBATH MC
simulations of 400 000 MC sweeps with 500 Lennard-Jones
12-6 potential particles at several sets of temperature and
pressure values. They were carried out atsT0

* ,P0
*d

=s2.0,3.0d, (1.6, 3.0), (2.4, 3.0), (2.0, 2.2), and (2.0, 3.8).
The first set is the same assT0

* ,P0
*d that was used in the first

iteration of the weight-factor determinations in the MU-
BATH, MUBA, and MUTH simulations[see Eqs.(12), (13),
(21), (22), (27), and(30)].

In order to assess the statistical accuracies, we performed
these MC simulations from four different initial conditions in

FIG. 2. The contour maps of the probability distributions PsE* /N,V* /Nd in logarithmic scale(a) from the ISOBATH simulation,(b)–(d)
from the MUBATH simulations,sb8d–sd8d from the MUBA simulations, andsb9d–sd9d from the MUTH simulations.
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all the algorithms. The error bars were estimated by the stan-
dard deviations from these different simulations.

IV. RESULTS AND DISCUSSION

We now present the results of the MUBATH, MUBA, and
MUTH simulations of the Lennard-Jones system of 500 par-
ticles. Figures 1 and 2 show the probability distributions of
E* /N andV* /N in logarithmic scale and their contour maps,
respectively. Figures 1(a) and 2(a) show PNPTsE* /N,V* /Nd
from the ISOBATH simulation first carried out in the process
of Eqs.(12) and(13) (i.e., T0

* =2.0 andP0
* =3.0). It is a bell-

shaped distribution. As the iteration of Eqs.(14) and(15) in
the MUBATH simulation proceeds, PmbtsE* /N,V* /Nd will
become flat and broad gradually as shown in Figs. 1(b)–1(d)
and in Figs. 2(b)–2(d). This fact implies that the MUBATH
MC simulation indeed sampled the configurational space in
wider ranges of energy and volume than the conventional
ISOBATH MC simulation.

Figures 1sb8d–1sd8d and 2sb8d–2sd8d show the probability
distributions PmbsE* /N,V* /Nd from the MUBA simulations.
It is found that PmbsE* /N,V* /Nd becomes gradually broad in
the volume space like a ribbon with an almost fixed width of

the potential-energy distribution by the iteration procedure of
Eqs. (21) and (23). In the MUBA method, one can obtain
various ISOBATH ensembles at various pressure values near
temperature T0

* . The distributions PmbsE* /N,V* /Nd in
Figs. 1sd8d and 2sd8d contain these ISOBATH-ensemble dis-
tributions. Comparing Figs. 1(d) and 2(d) with Figs. 1sd8d
and 2sd8d, the broadness in the volume space of the MUBA
distribution after the six iterations is almost the same as that
of the MUBATH distribution after the 12 iterations. That is,
in order to obtain a broad distribution in the volume space,
the MUBA simulation needs only about half a number of
iterations when compared to the MUBATH simulation.

Figures 1sb9d–sd9d and 2sb9d–2sd9d show the probability
distributions PmtsE* /N,V* /Nd from the MUTH simulations.
In contrast to the MUBA simulation, PmtsE* /N,V* /Nd from
the MUTH simulation becomes broad in the potential-energy
space like a ribbon with an almost fixed width of the volume
distribution by the iteration process of Eqs.(30) and(32). In
the MUTH method, one can obtain various ISOBATH en-
sembles, in which the pressure-temperature ratiosP* /T* are
the same asP0

* /T0
* . The distributions PmtsE* /N,V* /Nd in

Figs. 1sd9d and 2sd9d contain these ISOBATH-ensemble dis-
tributions. The MUTH simulation after the six iterations
makes a potential-energy distribution as broad as that of the

FIG. 3. The time series ofE* /N from (a) the ISOBATH MC simulations atsT* ,P*d=s2.4,3.0d and at sT* ,P*d=s1.6,3.0d, (b) the
MUBATH MC simulation, (c) the MUBA MC simulation, and(d) the MUTH MC simulation.
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MUBATH simulation after the 12 iterations. For obtaining a
wide distribution in the potential-energy space, about half the
number of iterations is necessary in the MUTH simulation
when compared to the MUBATH simulation. For a flat and
broad distribution in both spaces, however, the MUBATH
simulation is required.

Figure 3 shows the time series ofE* /N. Figure 3(a) gives
the results from the conventional ISOBATH MC simulations
at sT* ,P*d=s1.6,3.0d and(2.4, 3.0), while Fig. 3(b) presents
those of the MUBATH simulation. The potential energy fluc-
tuates in narrow ranges in the conventional ISOBATH simu-
lations. They fluctuate only in the ranges ofE* /N=−4.0
,−3.6 andE* /N=−5.1,−4.7 at the higher temperature of
T* =2.4 and at the lower temperature ofT* =1.6, respectively.
On the other hand, the MUBATH MC simulation performs a
random walk that covers a wide energy range. A similar situ-
ation is observed in the MUTH simulation, which is illus-
trated in Fig. 3(d). The MUTH algorithm realizes a random
walk in the potential energy space and covers a wide energy
range. On the other hand, Fig. 3(c) implies that the MUBA
algorithm samples theE* /N space in the range much wider
than the conventional ISOBATH simulation, but slightly nar-
rower than the MUBATH and MUTH simulations. This is
because the MUBA method is designed to realize a 1D ran-

dom walk in the volume space rather than in the potential
energy space. Moreover, the MUTH method is to realize
only a 1D random walk in the potential-energy space,
whereas the MUBATH algorithm has to perform a 2D ran-
dom walk both in the potential-energy space and in the vol-
ume space. The random walk in the potential-energy space is
therefore most efficient(most frequent visits to both the low-
est and the highest energy values) in the MUTH simulation
compared to the MUBATH and the MUBA simulations.

Figure 4 shows the time series ofV* /N. Figure 4(a) gives
the results from the conventional ISOBATH simulations at
sT* ,P*d=s2.0,3.8d and (2.0, 2.2), while Fig. 4(b) presents
those of the MUBATH simulation. The volume fluctuates in
narrow ranges in the conventional ISOBATH MC simula-
tions. They fluctuate only in the ranges ofV* /N=1.3,1.4
andV* /N=1.5,1.6 at the higher pressure ofP* =3.8 and at
the lower pressure ofP* =2.2, respectively. On the other
hand, the MUBATH simulation[Fig. 4(b)] and the MUBA
simulation [Fig. 4(c)] perform random walks that cover a
wide volume range. In contrast, Fig. 4(d) shows that the
MUTH algorithm samples theV* /N space in the range much
wider than the conventional ISOBATH simulation, but
slightly narrower than the MUBATH and MUBA simula-
tions. This is because the MUTH algorithm is designed to

FIG. 4. The time series ofV* /N from (a) the ISOBATH MC simulations atsT* ,P*d=s2.0,3.8d and at sT* ,P*d=s2.0,2.2d, (b) the
MUBATH MC simulation, (c) the MUBA MC simulation, and(d) the MUTH MC simulation.
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realize a 1D random walk in the potential-energy space
rather than in the volume space. Moreover, the MUBA
method is to realize only a 1D random walk in the volume
space, whereas the MUBATH algorithm has to perform a 2D
random walk. The random walk in the volume space is,
therefore, most efficient(most frequent visits to both the
lowest and the highest volume values) in the MUBA simu-
lation compared to the MUBATH and the MUTH simula-
tions.

From the broad and wide probability distribution of the
long production run from these generalized ISOBATH simu-
lations, various bell-shaped probability distributions
PNPTsE* /N,V* /N;T* ,P*d in the ISOBATH ensemble are ob-
tained by the reweighting techniques. They are shown in
Figs. 5–7.

From the MUBA simulation, one can obtain ISOBATH
distributions at a temperature close toT0

* and in a wide range
of P* /T* . Figure 5 shows ISOBATH distributions at
sT* ,P* /T*d=sT0

* ,P0
* /T0

*d=s2.0,1.5d and at different pressure-
temperature ratiossT0

* ,P* /T*d=s2.0,0.9d and s2.0,2.4d.
These distributions are inside the broad MUBA distribution
PmbsE* /N,V* /Nd (solid curve in Fig. 5). We can also calcu-
late a distribution at a temperature which is slightly different
from T0

* , although a distribution at a temperature far fromT0
*

is out of the MUBA distribution PmbsE* /N,V* /Nd. Note that
the histogram reweighting techniques yield accurate results
only in the range where we have a sufficient number of en-
tries in the histogram. We, therefore, expect that only the
reweighted distributions that lie within the range of the dis-
tribution of the MUBA simulation(enclosed in the solid
curve in Fig. 5) are reliable. In the present case, the re-
weighted distributions in the range withP* /T* =0.9,2.4
with T* =2.0 are expected to be accurate(see the discussions
below around Figs. 8–11 for more details).

From the MUTH simulation, one can obtain ISOBATH
distributions atT* and P* whose ratioP* /T* is close to

P0
* /T0

* . Figure 6 shows ISOBATH distributions at
sT* ,P* /T*d=sT0

* ,P0
* /T0

*d=s2.0,1.5d and at different tempera-
turessT* ,P0

* /T0
*d=s1.4,1.5d and s3.0,1.5d. We can also cal-

culate a distribution at a pressure-temperature ratio that is
slightly different from P0

* /T0
* , although a distribution at

P* /T* far from P0
* /T0

* is out of the MUTH distribution
PmtsE* /N,V* /Nd (solid curve in Fig. 6). In the present case,
the reweighted distributions in the range withT* =1.4,3.0
with P* /T* =1.5 are expected to be accurate.

Figure 7 shows ISOBATH distributions obtained from the
MUBATH simulation. These ISOBATH distributions are at

FIG. 5. The contour maps of the probability distributions
PNPTsE* /N,V* /N;T* ,P*d in logarithmic scale. They are determined
from the MUBA MC simulation by the reweighting techniques at
sT* ,P* /T*d=sT0

* ,P0
* /T0

*d=s2.0,1.5d, sT* ,P* /T*d=s2.0,0.9d, and
sT* ,P* /T*d=s2.0,2.4d. The outer solid curve is the contour map of
ln PmbsE* /N,V* /Nd=−12 from the MUBA simulation.

FIG. 6. The contour maps of the probability distributions
PNPTsE* /N,V* /N;T* ,P*d in logarithmic scale. They are determined
from the MUTH MC simulation by the reweighting techniques at
sT* ,P* /T*d=sT0

* ,P0
* /T0

*d=s2.0,1.5d, sT* ,P* /T*d=s1.4,1.5d, and
sT* ,P* /T*d=s3.0,1.5d. The outer solid curve is the contour map of
ln PmtsE* /N,V* /Nd=−12 from the MUTH simulation.

FIG. 7. The contour maps of the probability distributions
PNPTsE* /N,V* /N;T* ,P*d in logarithmic scale. They are determined
from the MUBATH MC simulation by the reweighting techniques
at sT* ,P* /T*d=sT0

* ,P0
* /T0

*d=s2.0,1.5d, sT* ,P* /T*d=s1.4,1.5d,
sT* ,P* /T*d=s3.0,1.5d, sT* ,P* /T*d=s2.0,0.9d, and sT* ,P* /T*d
=s2.0,2.4d. The outer solid curve is the contour map of
ln PmbtsE* /N,V* /Nd=−12 from the MUBATH simulation.
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sT* ,P* /T*d=sT0
* ,P0

* /T0
*d=s2.0,1.5d, at different pressure-

temperature ratiossT0
* ,P* /T*d=s2.0,0.9d and (2.0, 2.4), and

at different temperaturessT* ,P0
* /T0

*d=s1.4,1.5d and (3.0,
1.5). This means that the MUBATH simulation enables us to
calculate ISOBATH distributions atT* and P* /T* that are
significantly different fromT0

* andP0
* /T0

* . In the present case,
the reweighted distributions in the range withsT* ,P* /T*d
=s2.0,0.9d,s2.0,2.4d and sT* ,P* /T*d=s1.4,1.5d
,s3.0,1.5d are expected to be accurate.

In order to investigate further theT* andP* /T* ranges in
which the ISOBATH and the generalized ISOBATH methods
can accurately determine average physical quantities by the
reweighting techniques, we showkE* /NlNPT as functions of
P* /T* in Figs. 8(a), 9(a), 10(a), and 11(a) and as functions of
T* in Figs. 8(b), 9(b), 10(b), and 11(b). We also illustrate

kV* /N*lNPT as functions ofP* /T* in Figs. 8(c), 9(c), 10(c),
and 11(c) and as functions ofT* in Figs. 8(d), 9(d), 10(d),
and 11(d). Figure 8 is for the ISOBATH simulation, Fig. 9 is
for the MUBA simulation, Fig. 10 is for the MUTH simula-
tion, and Fig. 11 is for the MUBATH simulation. Figures
8–11 also show the curves of two equations of states of the
Lennard-Jones 12-6 potential fluid. One was determined by
Johnson, Zollweg, and Gubbins[29] and the other by Sun
and Teja[30]. In both cases, they calculated the quantities for
several pressure- and potential-energy values by the canoni-
cal molecular dynamics and MC simulations and fitted the
coefficients of the modified Benedict-Webb-Rubin type
equation into these simulated data to obtain the equations of
states empirically. These curves of equations of states are
accurate and can be used as reference in the present work.
The areas encircled by dotted curves roughly indicate those

FIG. 8. Average quantity calculation by the ISOBATH MC simulation. Average potential energies per particlekE* /NlNPT (a) as functions
of P* /T* at severalT* and (b) as functions ofT* at severalP* /T* . Average volumes per particlekV* /NlNPT (c) as functions ofP* /T* at
severalT* and (d) as functions ofT* at severalP* /T* . Filled circles: Combination of the ISOBATH MC simulation and the reweighting
technique. Solid lines: Equation of states calculated by Johnson, Zollweg, and Gubbins[29]. Broken lines: Equation of states calculated by
Sun and Teja[30]. The areas encircled by dotted curves indicate those in which the results by the reweighting techniques agree well with the
equations of states.
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in which the results by the reweighting techniques agree well
with the equations of states.

One cannot calculate physical quantities correctly by
combining the ISOBATH algorithm with the reweighting
techniques except atT* and P* /T* very close toT0

* and
P0

* /T0
* , respectively as shown in Fig. 8. AsT* or P* /T* is

going far fromT0
* or P0

* /T0
* , the error bars of any physical

quantities and the deviations from its correct value will get
large. The ranges in whichkE* /NlNPT and kV* /NlNPT are
correct are 1.6øT* ø2.5 and 1.0ø P* /T* ø1.9. Especially,
on the line ofP* /T* =P0

* /T0
* =1.5, kE* /NlNPT and kV* /NlNPT

are estimated correctly in the range of 1.8øT* ø2.3, and on
the line of T* =T0

* =2.0, they are correct in the range of 1.3
ø P* /T* ø1.8. It is necessary to use the generalized ISO-
BATH methods, such as the MUBATH, MUBA, and MUTH
algorithms, to determine physical quantities atT* andP* /T*

far from T0
* and P0

* /T0
* . The important point is that one can

obtain a desired ISOBATH distribution at numerous tem-
peratures and/or pressures by these generalized ISOBATH

algorithms from a single simulation run. This is the outstand-
ing advantage when compared to the conventional ISOBATH
MC algorithm, in which simulations have to be carried out
separately at each temperature and pressure.

Figure 9 showskE* /NlNPT and kV* /NlNPT calculated by
the MUBA simulation and the reweighting techniques. The
areas in which the physical quantities are determined cor-
rectly are elongated alongT* =constant lines when compared
with the ISOBATH method as shown in Figs. 9(a) and 9(c).
Figures 9(b) and 9(d), furthermore, indicate that these areas
are elongated vertically at temperatures nearT0

* . These facts
imply that the MUBA simulation realizes the volume-space
random walk and enables us to calculate physical quantities
accurately in the wide range ofP* /T* . The ranges in which
kE* /NlNPT and kV* /NlNPT are correct are 0.7ø P* /T* ø2.6.
In particular, on the line ofT* =T0

* =2.0, the reliable area in
which physical quantities can be determined accurately by
the reweighting techniques is extended to the range of 0.9
ø P* /T* ø2.6 from the ISOBATH range of 1.3ø P* /T*

FIG. 9. Average quantity calculation by the MUBA MC simulation. Filled circles: Combination of the MUBA MC simulation and the
reweighting techniques. See the caption of Fig. 8 for details.
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ø1.8 (see Fig. 8). This P* /T* range of the MUBA simula-
tion is more than three times larger than that of the ISO-
BATH simulation. On the other hand, regarding toT* , the
MUBA simulation has a reliable area for the reweighting
techniques that is similar to the ISOBATH simulation. Physi-
cal quantities are calculated correctly in the range of 1.6
øT* ø2.5, essentially the same range as in the ISOBATH
simulation.

A similar situation appeared in the MUTH simulation.
Figure 10 showskE* /NlNPT andkV* /NlNPT calculated by the
MUTH simulation and the reweighting techniques. The areas
in which the physical quantities are determined correctly are
elongated alongP* /T* =constant lines when compared with
the ISOBATH method as shown in Figs. 10(b) and 10(d).
Figures 10(a) and 10(c), furthermore, indicate that these ar-
eas are elongated vertically at pressure-temperature ratios
near P0

* /T0
* . These facts mean that the MUTH simulation

realizes the potential-energy-space random walk and enables
us to calculate physical quantities accurately in the wide

range ofT* . The ranges in which average quantities are cor-
rect are 1.3øT* ø3.3. In particular, on the line ofP* /T*

=P0
* /T0

* =1.5, the physical quantities are determined correctly
in 1.4øT* ø3.2. This T* range is more than three times
larger than the ISOBATH simulation range of 1.8øT* ø2.3.
On the other hand, regarding toP* /T* , the MUTH simula-
tion has a similar width to the ISOBATH simulation in which
the average values are correct. Physical quantities are calcu-
lated correctly in the range of 1.0ø P* /T* ø1.9, the same
range as in the ISOBATH simulation.

The MUBATH simulation covers the reliable areas for the
reweighting techniques applied both to the MUBA simula-
tion and to the MUTH simulation. That is, the MUBATH
simulation enables us to calculate physical quantities in wide
ranges of bothP* /T* andT* . Figure 11 shows that the MU-
BATH data agree with the equations of states well in 0.1
ø P* /T* ø2.8 and 1.0øT* ø3.4. In particular, they are cor-
rect in the range of 1.4øT* ø3.2 on the line ofP* /T*

=P0
* /T0

* =1.5 and in the range of 0.9ø P* /T* ø2.6 on the line

FIG. 10. Average quantity calculation by the MUTH MC simulation. Filled circles: Combination of the MUTH MC simulation and the
reweighting techniques. See the caption of Fig. 8 for details.
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of T* =T0
* =2.0. TheseP* /T* and T* ranges are the same as

theP* /T* range of the MUBA simulation and theT* range of
the MUTH algorithm, respectively. In other words, the
MUBATH simulation provides correct average quantities in
the ranges ofT* andP* /T* more than three times wider than
the ISOBATH simulation.

The T* and P* /T* ranges of the encircled areas in Figs.
9–11 agree well with theT* and P* /T* values at which the
reweighted ISOBATH distributions are inside the broad dis-
tributions of the generalized ISOBATH simulations in Figs.
5–7. For instance, in Fig. 5 the reweighted ISOBATH distri-
butions lie within the original distribution of the MUBA
simulation forP* /T* =0.9,2.4 with T* =2.0. This range of
P* /T* values are consistent with the encircled areas in Fig. 9.
In order to estimateT* and P* /T* ranges in which accurate
physical quantities are calculated, therefore, one should
check that the reweighted ISOBATH distribution is in the
original distributions of the generalized ISOBATH simula-
tions. When the reweighted ISOBATH distribution is in the

generalized ISOBATH distributions, the physical quantities
at theseT* andP* /T* values are obtained reliably.

V. CONCLUSIONS

In this paper, we presented three generalized-ensemble
MC algorithms, namely the multibaric-multithermal(MU-
BATH) algorithm, multibaric-isothermal(MUBA ) algorithm,
and isobaric-multithermal(MUTH) algorithm. We success-
fully applied these methods to the Lennard-Jones 12-6 po-
tential system. The advantage of our methods is that the
simulations sample the configurational space more widely
than the conventional ISOBATH MC method. Therefore, one
can obtain various ISOBATH ensemble averages from only
one simulation run. In principle, the MUBATH simulation
can provide various ISOBATH ensemble averages at anyT
and P/T values. Similarly, the MUBA simulation can pro-
vide ISOBATH averages at anyP/T and atT nearT0 and the
MUTH simulation can provide ISOBATH averages at anyT

FIG. 11. Average quantity calculation by the MUBATH MC simulation. Filled circles: Combination of the MUBATH MC simulation and
the reweighting techniques. See the caption of Fig. 8 for details.
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and atP/T nearP0/T0. In practice, however, it is impossible
to obtain the ideal weight factors with a finite number of
iterations for the weight factor determinations. Thus, the re-
liable ranges ofT andP/T in which physical quantities can
be determined accurately by the reweighting techniques de-
pend on how much effort one is willing to spend for the
weight-factor determinations.

These algorithms will be of use for investigating a large
variety of more complex systems, such as proteins, poly-
mers, supercooled liquids, and glasses. It will be also useful
to study the problem in which the pressure is important, for
example, pressure-induced phase transitions. We will present

the results of the applications of the present algorithms to the
phase-transition region of the Lennard-Jones potential sys-
tem in the future communications.
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